Zeta-like multiple zeta values in positive characteristic
نویسندگان
چکیده
We study multiple zeta values (MZV’s) over the rational function field $${\mathbb {F}}_q$$ which were introduced by Thakur as analogues of classical Euler. In this paper we affirmatively solve a conjecture Lara Rodriguez and gives full list zeta-like MZV’s weight at most $$q^2$$ depth 2. Further, completely determine all arbitrary depth. Our method is based on criterion derived from Anderson–Thakur motivic interpretation Anderson–Brownawell–Papanikolas for linear independence in positive characteristic.
منابع مشابه
Geometric Gamma Values and Zeta Values in Positive Characteristic
In analogy with values of the classical Euler Γ-function at rational numbers and the Riemann ζ-function at positive integers, we consider Thakur’s geometric Γ-function evaluated at rational arguments and Carlitz ζ-values at positive integers. We prove that, when considered together, all of the algebraic relations among these special values arise from the standard functional equations of the Γ-f...
متن کاملAspectsof Multiple Zeta Values
Multiple zeta values (MZVs, also called Euler sums or multiple harmonic series) are nested generalizations of the classical Riemann zeta function evaluated at integer values. The fact that an integral representation of MZVs obeys a shuue product rule allows the possibility of a combi-natorial approach to them. Using this approach we prove a longstanding conjecture of Don Zagier about MZVs with ...
متن کاملMultiple Zeta Values
for any collection of positive integers s1, s2, . . . , sl. By definition, Lis(1) = ζ(s), s ∈ Z, s1 ≥ 2, s2 ≥ 1, . . . , sl ≥ 1. (4.2) Taking, as before for multiple zeta values, Lixs(z) := Lis(z), Li1(z) := 1, (4.3) let us extend action of the map Li : w 7→ Liw(z) by linearity on the graded algebra H (not H, since multi-indices are coded by words in H). Lemma 4.1. Let w ∈ H be an arbitrary non...
متن کاملMultiple Zeta Values 17
It is now a good time to go back to the MZV story. where F (a, b; c; z) denotes the hypergeometric function and i = √ −1. Proof. Routine verification (with a help of Lemma 4.1 for the left-hand side) shows that the both sides of the required equality are annihilated by action of the differential operator (1 − z) d dz 2 z d dz 2 − t 4 ; in addition, the first terms in z-expansions of the both si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2022
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-022-02970-4